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Abstract. One of the main reasons for low acceptance by seniors the
available technology for automatic fall detection is that the existing de-
vices generate too much false alarms. Additionally, the camera-based
devices do not preserve the privacy adequately. In our approach an ac-
celerometer is utilized to indicate a potential fall. A fall hypothesis is
then verified in the second stage in which we employ a depth image,
which was shot at the moment of the potential fall. A detector that was
trained in advance on features extracted both from depth images and
points cloud is responsible for verification whether a person is lying on
the floor. After all, to reliably distinguish the fall from fall-like activi-
ties we perform final verification, in which we employ the proposed fall
energy image. The fall energy image expresses the distribution of the
person’s motion in the set of images preceding the fall.
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1 Introduction

Falls are a major health risk and a significant obstacle to independent living of
the seniors [13]. In response to the demand for fall detection technology, plenty of
research has been done in the recent years to develop unobtrusive fall detection
systems for enhancing the functional ability of the elderly and patients [16].
However, despite many efforts made to obtain reliable and unobtrusive person
fall detection, current technology does not meet the seniors’ needs. One of the
main reasons for non-acceptance of the currently available technology by elderly
is that the existing devices generate too much false alarms, which in turn lead
to considerable frustration of the seniors. Additionally, the existing devices do
not preserve the privacy and unobtrusiveness adequately.

In recent years, a lot of research has been done on detecting falls using a wide
range of sensor types. Mubashir et al. [16] done a survey of methods used in the
existing systems. Single CCD camera [18], multiple cameras [6], specialized omni-
directional ones [15] and stereo-pair cameras [9] are widely used in the vision
systems for fall detection. Most of the currently available techniques for fall



detection are based on wearable sensors. Accelerometers or both accelerometers
and gyroscopes are the most frequently used sensors in devices responsible for
fall monitoring [17]. However, on the basis of inertial sensors it is not easy to
separate real falls from fall-like activities [2] and in consequence the devices that
are built on only such sensors typically trigger significant amount of false alarms.
The reason is that the characteristic motion patterns of fall also exist in many
actions. For instance, the crouch also demonstrates a rapid downward motion.

Recently, Kinect sensor was used in prototype systems for fall detection [10,
11, 14]. It is the world’s first low-cost device that combines an RGB camera and a
depth sensor. Unlike 2D cameras, it allows 3D tracking of the body movements.
Thus, if only depth images are used it preserves the person’s privacy. Because
depth images are extracted with the support of an active light source, they are
largely independent of external light conditions. Thanks to the use of the infrared
light the Kinect is capable of extracting the depth images in dark rooms.

In this work we demonstrate an approach to reduce the number of false
positives alarms in fall detection through the use of an accelerometer and the
depth images. The accelerometer is utilized to indicate a potential fall. A fall
hypothesis is then verified in the second stage in which we employ a depth
image, which was shot at the time of the potential fall of the person. A detector
that was trained in advance on features extracted both from depth images and
points cloud is responsible for verification whether a person is lying on the floor.
After all, to reliably distinguish the fall from fall-like activities we perform final
verification, in which we employ the proposed fall energy image. The fall energy
image expresses the distribution of the person’s motion in a collection of the
images, acquired in a certain period of time before the potential fall alert.

The contribution of this work is twofold: firstly we propose fall energy images
(FEI) as an effective spatiotemporal representation of the human fall. Secondly,
we show how to extract such energy fall images on the basis of the depth images
and then how to utilize them to achieve reliable fall detection. Shape mod-
eling using spatiotemporal features provides crucial information about human
activities. In [7], a method for fall detection that is based on a combination of
the eigenspace and integrated time motion images (ITMI) was developed. ITMI
contain motion information and time stamps of motion occurrence. Multilayer
perceptron neural network was utilized for classification of motions and detec-
tion of the fall event. In [19], a mobile human airbag system was designed for
fall protection for the elderly. A Micro Inertial Measurement Unit consisting of
three dimensional accelerometers, gyroscopes, a Bluetooth module and a Micro
Controller Unit (MCU) is utilized to record human motion information. Through
analysis of images acquired by a high-speed camera, a lateral fall can be deter-
mined on the basis of a gyro threshold. The classification of falls is performed by
a support vector machine (SVM) classifier. The majority of vision based systems
for fall detection do not take into account the motion information. In this work
we demonstrate how to extract fall energy images using accelerometer and depth
images as well as how to process them. The accelerometer helps us to extract
the representative segment of the images as a representation of the fall event.



2 Person Detection in Depth Images

Depth is very useful cue to achieve reliable person detection because humans
may not have consistent color and texture but have to occupy an integrated
region in space. The Kinect combines structured light with two classic computer
vision techniques, namely depth from focus and depth from stereo. It is equipped
with infrared laser-based IR emitter, an infrared camera and a RGB camera.
The IR camera and the IR projector compose a stereo pair with a baseline of
approximately 75 mm. A known pattern of dots is projected from the IR laser
emitter. These specs are captured by the IR camera and then compared to the
known pattern. Since there is the distance between laser and sensor, the images
correspond to different camera positions, and that in turn allows to use stereo
triangulation to calculate each spec depth. The field of view of the system is 57◦

horizontally and 43◦ vertically, the minimum measurement range is about 0.6 m,
whereas the maximum range is somewhere between 4-5 m. It captures the depth
and color images simultaneously at a frame rate of about 30 fps. The default
RGB video stream has size 640 × 480 and 8-bit for each channel, whereas the
depth stream is 640× 480 resolution and with 11-bit depth.

The software called NITE from PrimeSense offers skeleton tracking on the
basis of depth images. However, this software is targeted for supporting the
human-computer interaction, and not for detecting the person fall. Thus, in many
circumstances it can have difficulties in extracting and tracking the person’s
skeleton. Therefore, we employ a person detection method [11], which reliably
extracts the subject including situations when he/she is lying on the floor.

The person was delineated on the basis of a scene reference image, which was
extracted in advance and then updated on-line. In the depth reference image each
pixel assumes the median value of several pixels values from the past images. In
the setup phase we collect a number of the depth images, and for each pixel we
assemble a list of the pixel values from the former images, which is then sorted in
order to extract the median. Given the sorted lists of pixels the depth reference
image can be updated quickly by removing the oldest pixels and updating the
sorted lists with the pixels from the current depth image and then extracting
the median value. We found that for typical human motions, good results can be
obtained using 13 depth images [11]. For Kinect acquiring the images at 25 Hz
we take every fifteenth image.

In the detection mode the foreground objects are extracted through differ-
encing the current depth image from such a depth reference map. Afterwards,
the person is delineated through extracting the largest connected component in
the thresholded difference between the current map and the reference map.

3 V-disparity Based Ground Plane Extraction

Given a depth map provided by the Kinect sensor, the disparity d can be deter-
mined in the following manner:

d =
b · f
z

(1)



where z is the depth (in meters), b is the horizontal baseline between the cameras
(in meters), f is the (common) focal length of the cameras (in pixels). The IR
camera and the IR projector form a stereo pair with a baseline of approximately
b = 7.5 cm, whereas the focal length f is equal to 580 pixels.

Let H be a function of the disparities d such that H(d) = Id. The Id is the
v-disparity image and H accumulates the pixels with the same disparity from a
given line of the disparity image. Thus, in the v-disparity image each point in
the line i represents the number of points with the same disparity occurring in
the i-th line of the disparity image. In [12] the v-disparity maps between two
stereo images were used to achieve reliable obstacle detection. In our work the
v-disparity maps are extracted using depth images determined by Kinect.

The line corresponding to the floor pixels in the v-disparity map was ex-
tracted using the Hough transform operating on v-disparity values and a pre-
defined range of parameters. The accumulator was incremented by v-disparity
values [11]. Assuming that the Kinect is placed at height about 1 m from the
floor, the line representing the floor should begin in the disparities ranging from
21 to 25 depending on the tilt angle of the sensor. Given the extracted line in
such a way, the pixels belonging to the floor areas were determined [11]. Due to
the measurement inaccuracies, pixels falling into some disparity extent dt were
also considered as belonging to the ground. Assuming that dy is a disparity in the
line y, which represents the pixels belonging to the ground plane, we take into
account the disparities from the range d ∈ (dy − dt, dy + dt) as a representation
of the ground plane.

After the transformation of the pixels representing the floor to the 3D points
cloud, the plane described by the equation ax+by+cx+d has been recovered [11].
The parameters a, b, c and d were estimated using the RANSAC algorithm. The
distance to the ground plane from the 3D centroid of points cloud corresponding
to the segmented person was determined on the basis of the following equation:

D =
|aXc + bYc + cZc + d|√

a2 + b2 + c2
(2)

where Xc, Yc, Zc stand for the coordinates of the person’s centroid.

4 Lying Pose Recognition

The recognition of lying pose was achieved using a classier trained on features
representing the extracted person both in depth images and in point clouds. A
data-set consisting of images with normal activities like walking, sitting down,
crouching down and lying has been composed in order to train a classifier re-
sponsible for testing whether a person is lying on the floor and to evaluate its
performance. Thirty five volunteers with age under 28 years attended in prepa-
ration of the data-set. The image sequences were recorded using two Kinect
devices. The first Kinect was placed at a height of about one meter to the floor,
whereas the second one was placed at a ceiling corner of the room. Figure 1
shows example depth images seen from such two different views.



Fig. 1: Person in depth images seen from two different views.

In total 312 images representing typical human actions were selected and
then utilized to extract the following features:

– h/w - a ratio of width to height of the person’s bounding box, calculated in
the points cloud

– h/hmax - a ratio expressing the height of the person’s surrounding box in
the current frame to the height of the person

– dist - the distance of the person centroid to the floor, expressed in millimeters
– max(σx, σz) - standard deviation from the centroid for the abscissa and the

depth, respectively.

Figure 2 depicts a scatterplot matrix for the employed attributes, in which a col-
lection of scatterplots is organized in a two-dimensional matrix simultaneously to
provide correlation information among the attributes. In a single scatterplot two
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Fig. 2: Multivariate classification scatter plot for features used in lying pose recognition.



attributes are projected along the x-y axes of the Cartesian coordinates. As we
can observe, the overlaps in the attribute space are not too significant. We consid-
ered also another attributes, for instance, a filling ratio of the rectangles making
up the person’s bounding box. The worth of the considered features was eval-
uated on the basis of the information gain [4], which measures the dependence
between the feature and the class label. In the assessment of the discrimination
power of the considered features and selecting the most discriminative ones we
utilized the InfoGainAttributeEval procedure from the Weka [5], which is a
collection of machine learning algorithms.

5 Fall Energy Image

Several motion features have been proposed until now to represent people activ-
ities, such as Motion History Image (MHI) [1]. Usually, the MHI is generated on
the basis of binary images, where the person silhouette sequence is condensed
into gray scale images as a weighted combination of all motion images. The result
of such a motion condensation is a scalar-valued image in which more recently
moving pixels are brighter. One of the advantages of the MHI representation is
that a range of action images may be encoded in a single motion-shape. Typi-
cally, in action recognition phase such a static shape pattern is compared with
pre-stored action prototypes.

The Fall Energy Image is an average of all silhouette images of a single
fall. Such a spatiotemporal energy map spans the time scale of person fall. The
energy map is calculated using a number of binary silhouette images before
the fall. The images are scaled according to the distance of the person to the
camera. We assume that a fall occurs if the signal upper peak value from the
accelerometer is greater than 3g. Figure 3 illustrates example fall energy images
with the corresponding plots of signal upper peak value (UPV) vs. time. As we
can observe, both actions have quite similar characteristics in the acceleration
domain, but totally different fall energy maps.

The weighted average (moment) of the fall energy expressed by pixel inten-
sities was computed using moments as follows:

xc =

∑
x

∑
y xP (x, y)∑

x

∑
y P (x, y)

yc =

∑
x

∑
y yP (x, y)∑

x

∑
y P (x, y)

(3)

where x, y are pixel coordinates. The major length and width (eigenvalues) of
the fall energy has been calculated in the following manner [8]:

l = 0.707
√

(a+ c) +
√
b2 + (a− c)2

w = 0.707
√

(a+ c)−
√
b2 + (a− c)2

(4)



Fig. 3: Fall energy images for a forward fall (left) and sitting on a chair (right) with
corresponding plots of signal upper peak value vs. time (bottom row).

where
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M00
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c , b = 2(M11
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We calculated also the average fall energy, i.e. the mean value of non-zero pixel
values in the fall energy image P (x, y) as well as the Euclidean distance dE
between the weighted average location of the fall energy (yc, xc) and the geo-
metrical centroid of the thresholded energy map. Figure 4 depicts the scatter
plot matrix for such energy features. The features were extracted on the basis
of 30 image sequences in which half of them contained person falls. The remain-
ing sequences contained person activities, which were very similar to fall. The
activities were performed close to the floor and contained actions consisting in
sitting on the floor, laying down on the floor, for instance to raise an object,
etc. The features were extracted on the basis of 30 depth images just before
the human fall, which in turn was signaled by a procedure processing data from
the accelerometer. That means that the FEI image expresses the fall energy in
about 1 sec. As we can observe, on the basis of such a set of features the person
fall can be distinguished from the non-fall activities. We considered also energy
features extracted on the basis of the bank of Log-Gabor filters. Their worth
was evaluated on the basis of the information gain and then compared to the
discrimination power of the above discussed features. The experimental results
showed that their worth is not worse in comparison to Gabor filter based energy
features and therefore we decided to use them in the evaluation of the whole
system. It is worth to note that they can be extracted in considerably shorter
time.



d E

avg(I) l w d
E

w
l

av
g(

I)

Fig. 4: Multivariate classification scatter plot for features extracted on fall energy im-
ages.

6 Experimental Results

Thirty five young health volunteers with age under 28 years attended in prepa-
ration of the data-sets and in the evaluation of the fall detection accuracy. To
show the resistance of the system to the placement of the camera the images were
acquired by two Kinect devices. The motion data were acquired by a wearable
smart device (Sony PlayStation Move) containing accelerometer and gyroscope
sensors. Data from the device were transmitted wirelessly via Bluetooth and re-
ceived by a laptop computer. In all, 312 images acquired by two Kinect devices
were selected and then used to evaluate the k-NN classifier responsible for check-
ing whether the person is lying on the floor. The number of images with a fall
was equal to 110. We evaluated also KStar [3], SVM and multilayer perceptron
(MLP) classifiers. The KStar and MLP classified all falls correctly, whereas the
remaining algorithms incorrectly classified two instances. A k-NN based motion
classifier was trained on 30 image sequences of which 15 contained fall events.
Its accuracy was evaluated in 10-fold cross-validation and one fall was classified
incorrectly. The SVM and KStar classified all falls correctly.

The complete system for fall detection was tested with simulated-falls per-
formed by young volunteers under supervised conditions onto crash mats. The
accelerometer was worn near the pelvis. Five volunteers attended in the tests and
evaluations of our system. Intentional falls were performed in home towards a
carpet with thickness of about 2 cm. Each individual performed ADLs like walk-



ing, sitting, crouching down, leaning down/picking up objects from the floor,
lying on a bed. As expected, using only the accelerometer the number of false
alarms was considerable. Experimental results demonstrated that most of them
can be ignored owing to the use of our recognition module of the lying pose.
This operation is done at low computational cost as the verification of the fall
is performed if the module processing the data from the accelerometer triggers
the alarm. Moreover, on the basis of the accelerometer based alarm the sys-
tem obtains information which image should be processed to decide if an event
consisting in person lying on the floor takes place. All person activities that
have been considered in the previous work [10] were classified correctly. During
the evaluation of the system the volunteers found several fall-like actions, which
were not considered in the previous work and for which the two-stage algorithm
triggered false alarms. The experimental results obtained on the system with
three modules, i.e. accelerometer, lying pose recognition and fall energy analysis
demonstrated that the fall energy features are very useful in further reduction
of the false alarm ratio. A comprehensive evaluation showed that the system
has high accuracy of fall detection and very low level of false alarms. It demon-
strated that the placement of the cameras does not have an influence on the
classification accuracy.

The depth images were acquired by the Kinect sensors using OpenNI. The
system was implemented in C/C++ and runs at 25 fps on 2.4 GHz I7 notebook.
The most computationally demanding operation is extraction of the depth ref-
erence image of the scene. For images of size 640 × 480 the computation time
needed for extraction of the depth reference image is about 9 milliseconds. In
order to reduce the computational overload the depth reference images were only
updated if on the image acquired in the moment of the fall, two or more blobs
had been detected. In practice, we examined the thresholded difference between
the current depth map and the reference map in terms of the number of blobs.

7 Conclusions

In this work we demonstrated how to achieve reliable fall detection with low
false positives number. Given the alarm trigger obtained on the basis of data
from wireless accelerometer, the system extracts the person features from the
corresponding depth image and point clouds. The system uses them in a k-NN
classifier to examine if the person is lying on the floor. In order to further reduce
the false alarm ratio the system extracts fall energy images from a sequence of
images up to the fall and then employs the energy features in a k-NN classifier.
Experimental results demonstrated that this leads to considerable reduction of
false alarms and high detection ratio. The system preserves the privacy of the
user and works in poor lighting conditions.
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J.: Fall detection - principles and methods. In: Annual Int. Conf. of the IEEE
Engineering in Medicine and Biology Society. pp. 1663–1666 (2007)

18. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3D head tracking
to detect falls of elderly people. In: Annual Int. Conf. of the IEEE Engineering in
Medicine and Biology Society. pp. 6384–6387 (2006)

19. Shi, G., Chan, C.S., Li, W.J., Leung, K.S., Zou, Y., Jin, Y.: Mobile human airbag
system for fall protection using MEMS sensors and embedded SVM classifier. Sen-
sors Journal, IEEE 9(5), 495–503 (2009)


