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Abstract. The existing CCD-camera based systems for fall detection
require time for installation and camera calibration. They do not pre-
serve the privacy adequately and are unable to operate in low lighting
conditions. In this paper we show how to achieve automatic fall detection
using only depth images. The point cloud corresponding to floor is delin-
eated automatically using v-disparity images and Hough transform. The
ground plane is extracted by the RANSAC algorithm. The detection of
the person takes place on the basis of the updated on-line depth reference
images. Fall detection is achieved using a classifier trained on features
representing the extracted person both in depth images and in point
clouds. All fall events were recognized correctly on an image set consist-
ing of 312 images of which 110 contained the human falls. The images
were acquired by two Kinect sensors placed at two different locations.
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1 Introduction

In almost all countries of the world the elderly population is continuously in-
creasing. Improving the quality of life of increasingly elderly population is one
of the most central challenges facing our society today. As humans become old,
their bodies weaken and the risk of accidental falls raises noticeably [12]. A fall
can lead to severe injuries such as broken bones, and a fallen person might need
assistance at getting up again. Falls lead to losing self-confidence, a loss of in-
dependence and a higher risk of morbidity and mortality. Thus, in recent years
a lot of research has been devoted to development of unobtrusive fall detection
methods [15]. However, despite many efforts undertaken to achieve reliable and
unobtrusive fall detection [16], the existing technology does not meet the seniors’
needs [18]. The main reason is that it does not preserve the privacy and unob-
trusiveness adequately. In particular, the current solutions generate too much
false alarms, which in turn lead to considerable frustration of the seniors.

Most of the currently available techniques for fall detection are based on
body-worn or built-in devices. They typically employ accelerometers or both ac-
celerometers and gyroscopes [16]. However, on the basis of such sensors it is not



easy to separate real falls from fall-like activities [2]. They typically trigger sig-
nificant number of false alarms. Moreover, the detectors that are typically worn
on a belt around the hip, are obstructive and uncomfortable during the sleep
[7]. What’s more, their monitoring performance in critical phases like getting up
from the bed or the chair is relatively poor.

In recent years, a lot of research has been done on detecting falls using a wide
range of sensor types [16][18], including pressure pads [17], single CCD camera
[1], multiple cameras [6], specialized omni-directional ones [14] and stereo-pair
cameras [8]. Video cameras have several advantages over other sensors includ-
ing the capability of recognition a variety of activities. Additional benefit is
low intrusiveness and possibility of a remote verification of fall events. However,
the solutions that are available at present require time for installation, camera
calibration and in general they are not cheap. Additionally, the lack of 3D in-
formation can lead to lots of false alarms. Moreover, in vast majority of such
systems the privacy is not preserved adequately.

Recently, the Kinect sensor was employed in fall detection systems [9][10][13].
It is the world’s first low-cost device that combines an RGB camera and a depth
sensor. Unlike 2D cameras, it allows tracking the body movements in 3D. Thus,
if only depth images are used it preserves the privacy. Since it is equipped with
an active light source it is independent of external light conditions. Owing to
using the infrared light it is capable of extracting depth images in dark rooms.

In this work we demonstrate an approach to fall detection using only depth
images. The person is detected on the basis of the depth reference image. We
demonstrate a method for updating the depth reference image with a low compu-
tational cost. The ground plane is extracted automatically using the v-disparity
images, Hough transform and the RANSAC algorithm. Fall detection is achieved
using a classifier trained on features representing the extracted person both in
depth images and in point clouds.

2 Person Detection in Depth Images

Depth is very useful cue to achieve reliable person detection because humans
may not have consistent color and texture but have to occupy an integrated
region in space. The depth images were acquired by the Kinect sensor using
OpenNI (Open Natural Interaction) library. The sensor has an infrared laser-
based IR emitter, an infrared camera and a RGB camera. The IR camera and
the IR projector form a stereo pair with a baseline of approximately 75 mm.
Kinect depth measurement is based on structured light, making a triangulation
between the dot pattern emitted and the pattern captured by the IR CMOS
sensor. The pixels in the depth images indicate calibrated depth in the scene.
Kinect’s angular field of view is 57◦ horizontally and 43◦ vertically. The sensor
has a practical ranging limit of about 0.6-5 m. It captures depth and color images
simultaneously at a frame rate of about 30 fps. The default RGB video stream
has size 640 × 480 and 8-bit for each channel. The depth stream is 640 × 480
resolution and with 11-bit depth, which provides 2048 levels of sensitivity.



Due to occlusions it is not easy to detect a person using only single camera
and depth images. The software called NITE from PrimeSense offers skeleton
tracking on the basis of images acquired by the Kinect sensor. However, this
software is targeted for supporting the human-computer interaction, and not for
detecting the person fall. Thus, in many circumstances it can have difficulties in
extracting and tracking the person’s skeleton [10].

The person was detected on the basis of a scene reference image, which was
extracted in advance and then updated on-line. In the depth reference image each
pixel assumes the median value of several pixels values from the past images. In
the set-up stage we collect a number of the depth images, and for each pixel we
assemble a list of the pixel values from the former images, which is then sorted in
order to extract the median. Given the sorted lists of pixels the depth reference
image can be updated quickly by removing the oldest pixels and updating the
sorted lists with the pixels from the current depth image and then extracting
the median value. We found that for typical human motions, good results can be
obtained using 13 depth images. For the Kinect acquiring the images at 25 Hz
we take every fifteenth image.

Figure 1 illustrates some example depth reference images, which were ob-
tained using the discussed technique. In the image #500 we can see an office
with the closed door, which was then opened to demonstrate how the algorithm
updates the reference image. In frames #650 and #800 we can see that the
opened door appears temporally in the binary image, and then it disappears
in the frame #1000. As we can observe, the updated reference image is clutter
free and allows us to extract the person’s silhouette in the depth images. In or-
der to eliminate small objects the depth connected components were extracted.
Afterwards, small artifacts were eliminated. Otherwise, the depth images can
be cleaned using morphological erosion. When the person does not move the
reference image is not updated.

#500 650 800 1000

Fig. 1. Person segmentation using depth reference image. RGB images (upper row),
depth (middle row) and binary images depicting the delineated person (bottom row).



In the detection mode the foreground objects are extracted through differ-
encing the current image from such a reference depth map. Afterwards, the fore-
ground object is determined through extracting the largest connected component
in the thresholded difference map. Alternatively, the subject can be delineated
using a pre-trained person detector. However, having in mind the privacy, the
use of a person detector operating on depth images or point clouds leads to lower
detection ratio and a higher computational cost.

3 V-disparity Based Ground Plane Extraction

In [11] a method based on v-disparity maps between two stereo images has been
proposed to achieve reliable obstacle detection. Given a depth map provided by
the Kinect sensor, the disparity d can be determined in the following manner:

d =
b · f
z

(1)

where z is the depth (in meters), b is the horizontal baseline between the cameras
(in meters), f is the (common) focal length of the cameras (in pixels). The IR
camera and the IR projector form a stereo pair with a baseline of approximately
b = 7.5 cm, whereas the focal length f is equal to 580 pixels.

Let H be a function of the disparities d such that H(d) = Id. The Id is the
v-disparity image and H accumulates the pixels with the same disparity from a
given line of the disparity image. Thus, in the v-disparity image each point in
the line i represents the number of points with the same disparity occurring in
the i-th line of the disparity image. Figure 2c illustrates the v-disparity image
that corresponds to the depth image depicted on Fig. 2b.

a) b) c)

Fig. 2. V-disparity map calculated on depth images from Kinect: RGB image a), cor-
responding depth image b), v-disparity map c).

The line corresponding to the floor pixels in the v-disparity map was ex-
tracted using the Hough transform. Assuming that the Kinect is placed at height
about 1 m from the floor, the line representing the floor should begin in the dis-
parities ranging from 15 to 25 depending on the tilt angle of the sensor. On
Fig. 3 we can see some example lines extracted on the v-disparity images, which
were obtained on the basis of images acquired in typical rooms, like office, see
Fig. 2c, classroom, etc.



Fig. 3. Lines extracted by Hough transform on various v-disparity maps.

The line corresponding to the floor was extracted using Hough transform
(HT) operating o v-disparity values and a predefined range of parameters. The
accumulator was incremented by v-disparity values, see Fig. 4a. It is worth not-
ing that ordinary HT operating on thresholded v-disparity images often gives
incorrect results, see Fig. 4b where the extremum is quite close to 0 deg.

a) b)

Fig. 4. Accumulator of the Hough transform: operating on v-disparity values a), thresh-
olded v-disparity images b). The accumulator depicted on figure a) is divided by 100.

Given the extracted line in such a way, the pixels belonging to the floor ar-
eas were determined. Due to the measurement inaccuracies, pixels falling into
some disparity extent dt were also considered as belonging to the ground. As-
suming that dy is a disparity in the line y, which represents the pixels belong-
ing to the ground plane, we take into account the disparities from the range
d ∈ (dy − dt, dy + dt) as a representation of the ground plane. Given the line
extracted by the Hough transform, the points on the v-disparity image with
the corresponding depth pixels were selected, and then transformed to the point
cloud [10]. After the transformation of the pixels representing the floor to the 3D
points cloud, the plane described by the equation ax+by+cx+d was recovered.
The parameters a, b, c and d were estimated using the RANSAC algorithm. The
distance to the ground plane from the 3D centroid of points cloud corresponding
to the segmented person was determined on the basis of the following equation:

D =
|aXc + bYc + cZc + d|√

a2 + b2 + c2
(2)

where Xc, Yc, Zc stand for the coordinates of the centroid.



4 Experimental Results

A data-set consisting of normal activities like walking, sitting down, crouching
down and lying has been composed in order to train classifiers and to evaluate
the performance of the fall detection system. Thirty five volunteers with age
under 28 years attended in preparation of the data-set. The image sequences
were recorded using two Kinect devices. The first Kinect was placed at a height
of about one meter to the floor, whereas the second one was placed at a ceiling
corner of the room. Figure 5 shows example depth images seen from two different
views.

Fig. 5. Person in depth images seen from two different views.

In total 312 images representing typical human actions were selected and
then utilized to extract the following features:

– h/w - a ratio of width to height of the person bounding box, calculated in
the points cloud

– h/hmax - a ratio expressing the height of the person surrounding box in the
current frame to the height of the person

– dist - the distance of the person centroid to the floor, expressed in millimeters
– max(σx, σz) - standard deviation from the centroid for the abscissa and the

depth, respectively.

Figure 6 depicts a scatterplot matrix for the employed attributes, in which a col-
lection of scatterplots is organized in a two-dimensional matrix simultaneously to
provide correlation information among the attributes. In a single scatterplot two
attributes are projected along the x-y axes of the Cartesian coordinates. As we
can observe, the overlaps in the attribute space are not too significant. We consid-
ered also another attributes, for instance, a filling ratio of the rectangles making
up the person bounding box. The worth of the features was evaluated on the basis
of the information gain [4], which measures the dependence between the feature
and the class label. In the evaluation we utilized the InfoGainAttributeEval
procedure from the Weka [5], which is a collection of machine learning algo-
rithms.

The classification accuracy was evaluated in 10-fold cross-validation using
Weka software. The falls were classified using KStar [3], AdaBoost, SVM, multi-
layer perceptron (MLP), Näıve Bayes (NB) and k-NN classifiers. The KStar and



Fig. 6. Multivariate classification scatter plot.

MLP classified all falls correctly, whereas the remaining algorithms incorrectly
classified 2 instances. The number of images with person fall was equal to 110.

The system was implemented in C/C++ and runs at 25 fps on 2.4 GHz
I7 (4 cores, Hyper-Threading) notebook powered by Linux. The most compu-
tationally demanding operation is extraction of the depth reference image. For
images of size 640 × 480 the computation time needed for extraction of the
depth reference image is about 9 milliseconds. At the PandaBoard, which is a
low-power, low-cost single-board computer development platform, this operation
can be completed in 0.15 sec. We are planning to implement the whole system
on the PandaBoard.

5 Conclusions

In this work we demonstrated our approach to fall detection using Kinect. The
fall detection is done on the basis of the segmented person in the depth images.
The segmentation of the person takes place using updated depth reference im-
age of the scene. For person extracted in such a way the corresponding points
cloud is then extracted. The ground plane is determined automatically using the
v-disparity images, Hough transform and the RANSAC algorithm. The fall is
detected using a classifier built on features extracted both from the depth images
as well as the points cloud corresponding to the extracted person. The system
achieves high detection rate. On image set consisting of 312 images of which 110
contained human falls all fall events were recognized correctly.
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